
Yo obtuve un resultado luego de trasvasar el vino 6 veces - Posiblemente no sea la única solución y tal vez no es la más corta pero el gráfico salió muy bonito:

Te animas a contarnos tu solución?...
Recopilación de juegos matemáticos. Juegos de ingenio. La utilidad de los números para divertir. Juegos para pensar. Demostraciones matemáticas.
Una sección áurea es una división en dos de un segmento según proporciones dadas por el número áureo. La longitud total a+b es al segmento más largo a como a es al segmento más cortob.
Se trata de un número algebraico que posee muchas propiedades interesantes y que fue descubierto en la antigüedad, no como “unidad” sino como relación o proporción. Esta proporción se encuentra tanto en algunas figuras geométricas como en la naturaleza en elementos tales como caracolas, nervaduras de las hojas de algunos árboles, el grosor de las ramas, etc.
Así mismo, se atribuye un carácter estético especial a los objetos que siguen la razón áurea, así como una importancia mística. A lo largo de la historia, se le ha atribuido importancia en diversas obras de arquitectura y otras artes, aunque algunos de estos casos han sido objetables para las matemáticas y la arqueología.
Es incontable la cantidad de obras arquitectónicas de todops los tiempos en los que se hace presente el número de Oro. En La Gran Pirámide de Keops, el cociente entre la altura de uno de los tres triángulos que forman la pirámide y el lado es 2?. La pirámide de Keops mide 230 metros de lado, la base de la pirámide es cuadrada.
AC = 230/2 = 115
?? ? 1.272
AB = ?? –> ?? x 115 ? 146,28 que son los metros de altura de la pirámide de Keops.
BC = ? x 115 ? 186,07 metros desde el centro de un lado de la base hasta el pico de la pirámide.
Los ejes de sus cuatro pilares forman un cuadrado de 100 metros, que seria el lado pequeño de un rectángulo áureo. Pues poniendo dos rectángulos conseguimos la altura de esta torre. 100 x ? x 2 ? 323,61 metros que es la altura de la torre.
También se encuentra en las diferentes partes de la torre, vea el dibujo donde el espacio azul seria igual a uno y Phi seria el espacio azul más el dorado.
El creador del Partenón (Debajo) fue Phidias. En realidad, el número de oro se llama Phi en su nombre, y la abreviatura Ø corresponde a la inicial de Phidias en griego.
La fachada del partenón es un perfecto rectángulo de oro, pero además, hay otra serie de medidas en el edificio que también poseen proporciones áureas:
En la foto están marc ados los rectángulos áureos: ABCD, AEGH, AEBF, y sus simétricos. Además, la zona de las molduras (en color violeta) también está compuesta por rectángulos áureos.
El rosotro de la Gioconda, pintada por Leonardo, se encuadra en un rectángulo áureo. [Razón áurea en la Gioconda]
Unas proporciones armoniosas para el cuerpo, que estudiaron antes los griegos y romanos, las plasmó en este dibujo Leonardo da Vinci. Sirvió para ilustrar el libro La Divina Proporción de Luca Pacioli editado en 1509.
En dicho libro se describen cuales han de ser las proporciones de las construcciones artísticas. En particular, Pacioli propone un hombre perfecto en el que las relaciones entre las distintas partes de su cuerpo sean proporciones áureas. Estirando manos y pies y haciendo centro en el ombligo se dibuja la circunferencia. El cuadrado tiene por lado la altura del cuerpo que coincide, en un cuerpo armonioso, con la longitud entre los extremos de los dedos de ambas manos cuando los brazos están extendidos y formando un ángulo de 90º con el tronco. Resulta que el cociente entre la altura del hombre (lado del cuadrado) y la distancia del ombligo a la punta de la mano (radio de la circunferencia) es el número áureo.
En varias sonatas para piano de Mozart, la proporción entre el desarrollo del tema y su introducción es la más cercana posible a la razón áurea.
Caracteristicas de la Sonata Nº1 para piano de Mozart:
- El segundo tema armónico de la obra siempre es más extenso que el primero
- Primer movimiento subdividido en 38 y 62 compases y 63 / 38 = 1.6315
- Segundo movimiento subdividido en 28 y 46 compases y 46 / 28 = 1.6428
Aunque no sabemos con precisión que Beethoven estuviera al tanto de ésto, pero en su Quinta Sinfonía, distribuye el tema siguiendo la sección áurea. El clímax de la obra se encuentra al 61,8 % de ella.
Los músicos de jazz autodidactas pueden no ser conscientes de la teoría de escalas, armonía y formas que usan habitualmente, pero igual producen obras armoniosas.
El Piano:El piano está constituido por siete octavas ordenadas de forma creciente de graves a agudas.
Así, los primeros seis números de la Sucesión de Fibonacci figuran en una octava de piano, la cual consiste en 13 teclas, 8 teclas blancas y 5 teclas negras ( en grupos de 2 y 3).
La imágen anterios es unaconcha de Nautilo. Si del rectángulo áureo ABCD extraemos el cuadrado AEFD nos queda otro rectángulo áureo EBCF, a este le extraemos el cuadrado EBHG tenemos otro rectángulo áureo GHCF y así podríamos seguir hasta el infinito.
Si a partir de estos cuadrados resultantes trazamos una curva que empieza por D hasta E con centro F después de E con centro G hasta H, aquí también podríamos seguir hasta el infinito, conseguimos una espiral logarítmica que se puede encontrar en la naturaleza en plantas y en animales, como en la concha de los nautilos.
El número áureo no solo lo podemos encontrar en la naturaleza o en las antiguas construcciones y representaciones artísticas, diariamente manejamos objetos en los cuales se ha tenido en cuenta las proporciones áureas para su elaboración. Por ejemplo, la mayoría de las tarjetas de crédito así como nuestro carnet tienen la proporción de un rectángulo áureo. También lo podemos encontrar en las cajetillas de tabaco, construcción de muebles, marcos para ventanas, camas, etc.
Artículo extraído de : El número de Oro; La Razón Aurea.
[(2X + 9 + X / 3) + 4] - X = [(3X + 9 / 3) + 4] - X = X + 3 + 4 - X = 7
1 + 2 + 4 + 8 + 16 + 32 + 64 + ... + ...
1 + 2 + 2^2 + 2^4 + 2^3 + ... + 2^62 + 2^64
18.446.744.073.709.551.615 granos de trigo
A los pocos minutos, Gauss se levantó del pupitre, y le entregó el resultado de la suma al profesor : 5050. El profesor, asombrado y seguramente creyendo que su alumno había puesto un número arbitrariamente, se dispuso él mismo a hacer la interminable suma. Al cabo de un buen rato, comprobó que, efectivamente, la suma daba como resultado 5050.
¿Como hizo Gauss para resolver la suma en tan pocos minutos?. Si no se tratara de un problema matemático, seguramente creeríamos que el joven niño contaba con algún tipo de poder paranormal. En efecto, el poder más brillante a veces se encuentra en la razón.
Como debía sumar los números del 1 al 100; Es decir:
1+2+3+4+5+6+……………..+97+98+99+100.
Observó por un momento la secuancia de números y descubrió que si sumaba el primero con el último, el segundo con el anteúltimo y así sucesivamente obtenía siempre el mismo resultado:
(1+100) = (2+99) = (3+98) = …. = (50+51) = 101
Luego, y como entre el número 1 y el 100 tenía 50 pares de números, solo restaba multiplicar por 50 el resultado obtenido.
50 x 101 = 5050.
Mas tarde, Gauss aplicaría el mismo principio para hallar la suma de la serie geométrica y muchas otras series.
Extraído de : Asustados : La suma de los 100 primeros números
La mitad para el mayor de los tres hijos.
La tercera parte para el mediano.
La novena parte para el más pequeño de los tres.
Número elegido menos la suma de sus dígitos: a X 10 + b X 1 - (a+b)
a X 10 + b X 1 - (a+b) = 10 a + b - a - b = 10 a - a = 9 a = 9 X a